
Tutorial on Autoencoders and VAEs
Matteo Lugli

January 3, 2024

1 Introduction
This topic will be quite dense in terms of statistical concepts. I will try to write a
summary that is a simple as possible, and I will also link the main resources that
I used at the end of the document (see 8). If you are reading this, you should be
familiar with deep learning and Bayesan inference.

Sections 2 and 3 will be a brief introduction to autoencoders, a really important deep
learning model that is used to compress data. In section 4 I will introduce generative
modeling related to the concept of latent variables. In section 5 a framework to train
variational autoencoders is provided, together with the explanation. In chapter 6 I
explain how you can use a trained VAE to perform different tasks. In chapter 7 I
give a brief introduction to the reparametrization trick, which is crucial to make these
kind of models trainable with gradient descent.

1

2 AUTOENCODERS

2 Autoencoders
Autoencoders exploit the ability of neural networks to represent information in a
contracted form. The basic idea is simple: given an input x, we forward it through a
neural network that has a "bottleneck" layer called h with a lower dimension then the
input, and which gives in output a vector with the same dimension as the original x.
We call the output x̄. If we train the network in a way that minimizes the distance
between x and x̄, we obtain a model that learns a "compressed" representation of
the input data. Hopefully, the contracted representation (also called code) can be
interpreted as a combination of the most important features that are observed in the
training data (meaning the ones that vary the most). This approach is similar to PCA,
but works also with samples that are distributed on a non-linear manifold. Think of
the two-moon dataset (google it if you are not familiar with it): PCA will not work
on that dataset because samples are not distributed on a linear manifold (a line in
2D) but on a more complicated one. In other words, PCA works on datasets where
dependencies between points are quite simple. Our goal is to find another method
that can summarize also more complex feature dependencies.

Figure 1: Autoencoder structure

In general, if we want a good lower dimensional representation of our data, we aim at:

• preserving as much information on the data as possible;

• the new representation has to be simpler and more accessible;

The key idea behind the training procedure is to minimize a loss function that gives

2

2 AUTOENCODERS

a penalty if g(f(x)) is dissimilar to x:

L(x, g(f(x))) (1)

Even if the autoencoder learns successfully to minimize 1, some problems may arise:

• Learning the identity function: if the code layer is given too much capacity,
the network will learn to copy and paste the original representation of x.

Figure 2: Copy-paste problem

• Learning a mapping function: if the encoder and decoder are given to deep
and big layers, even with a hidden layer of 1 unit the network can learn to use
a mapping procedure:

h = f(x(i)) = i (2)

Figure 3: Mapping problem

3

3 REGULARIZED AUTOENCODERS

There are many ways to address these issues: they all involve a modification of the
loss function needed to regularize the training phase, to avoid both overfitting and
underfitting. In the next chapter I summarize the main regularization methods.

3 Regularized Autoencoders
The baseline loss function for autoencoders is the following:

L = D(x, g(f(x))) (3)

with sparse autoencoders we also add some regularization terms according to what
kind of regularization we want to apply.

3.1 Sparse Autoencoders

With sparse autoencoders we encourage the neurons of the layer h to be mostly
inactive. By using less neurons, we imply that the new features of the encoded
sample will be more "orthogonal". In equation 4 ρ̄j indicates the average activation of
hidden unit j (of the hidden layer h) calculated over the whole training set. In sparse
autoencoders we want this value to be as close as possible to a sparsity parameter ρ,
which is close to zero.

ρ̄j = 1
m

m∑
i=1

a
(h)
j (x(i)) (4)

The loss function of a sparse autoencoder includes the sparsity penalty as well:

L = D(x, g(f(x))) + λ
|h|∑

j=1
KL(ρ||ρ̄j) (5)

where KL(ρ||ρ̄j) is the KL divergence between a bernoulli distribution with mean
ρ and a bernoulli distribution with mean ρ̄j, which has a closed form solution. In
the summation, j iterates over all of the hidden units in the layer h. λ controls the
importance of the regularization term compared to the reconstruction term.

4

3 REGULARIZED AUTOENCODERS

3.2 Denoising Autoencoders

The key idea behind denoising autoencoders is to train the network to reconstruct
the original input x from a noisy version x̂ of the input itself.

L = D(x, g(f(x̂))) (6)

where x̂ ∼ N (x, ΣI). This type of autoencoder doesn’t run the risk of learning the
identity function by construction, as otherwise, the loss function would be high. In
other words, the autoencoder learns a vecetor field that brings back noisy samples on
the underlying manifold on which the training data lies on. This means that denoising
autoencoders implicitly learn the structure of that manifold!

Figure 4: Denoising autoencoders

3.3 Contractive Autoencoders

With contractive autoencoders the main objective is to make the hidden representation
as insensitive as possible to small changes of the input. Also in this case learning
the copy function is not possible, because it would lead to big changes in the hidden
representation with a small change in the input. In other words, we want the hidden
representation to be sensitive only to the most important features of the training set.
This kind of autoencoder somehow "simplifies" the structure of the manifold.

L = D(x, g(f(x))) + λ||∂f(x)
∂x

||2 (7)

5

4 LATENT VARIABLES MODELS

Figure 5: Contractive autoencoders

4 Latent variables models
The classic autoencoder structure used in (for example) denoising autoencoders is
useful to implicitly learn the structure of the training data. The problem is that they
do not provide a explicit representation of that distribution. If we want to generate
new data, we need a to have a way to work with a distribution that it’s known and
from which we can sample!
VAEs are also called Latent Variable Models, because they make the assumpion that
the data can be represented through a combination of latent variables, denotes as
z. If we have dataset made of images, latent variables might be the orientation of
the subject, the color of the landscape, ecc. . . thanks to this assumption, instead of
directly sampling from p(x), we sample a set of latent variables from p(z), then we
use the produced z to sample from another distribution, p(x|z).
The final objective is to maximize the likelihood of our data under the entire generative
process:

p(x) =
∫

p(x|z)p(z)dz (8)

this framework is usually called maximum likelihood. The problem is that comput-
ing that integral is too hard: theoretically we would need to take a infinite number
of z, which is obviously impossible. What we might do is using some sort of Monte
Carlo method, where we sample many z and only use those. With real world data
this method is really uneffective and requires to many samples.

6

4 LATENT VARIABLES MODELS

In practice, p(x|z) will be zero for most of the combinations of the latent variables
(among all the possible combinations), and will be useless when computing the inte-
gral. One of the core ideas behind variational autoencoders is trying to understand
how the latent variables are distributed in our dataset, so that we can sample the z

from that distribution instead. This way we will compute p(x) with the z that are
more likely to have produced x. Let’s write the posterior that we want to compute,
that describes how the latent variables are distributed given the dataset:

p(z|x) = p(x|z)p(z)
p(x) (9)

as we can see this is still intractable because we find p(x) at the denominator. In vari-
ational inference we try to build a surrogate distribution q(z|x) that approximates
the true posterior p(z|x) by using a much simpler structure (a gaussian). Ideally, we
want the surrogate to be as similar as possible to the true posterior, so we want that
the KL divergence to be small1. Let’s write the formula of the distance:

DKL(q(z|x), p(z|x)) = Eq

[
log q(z|x), log p(z|x)

]
(10)

= Eq

[
log q(z|x), log p(x|z)p(z)

p(x)
]

(11)

= Eq

[
log q(z|x)

]
− Eq

[
log p(x, z)

]
+ Eq

[
p(x)

]
(12)

= Eq

[
log q(z|x)

]
− Eq

[
log p(x, z)

]
+ p(x) (13)

From 12 to 13 we removed the expectation on log p(x) because it is independent from
z; let’s bring log p(x) to the left hand side and rewrite the rest:

log p(x) = Ez∼q[log p(x, z)] − Ez∼q[log q(z|x)]︸ ︷︷ ︸
ELBO

+DKL

(
q(z|x), p(z|x)

)
(14)

In equation 14 we grouped the first 2 terms of the right hand side under the name of
ELBO. This term is a lower bound of the left hand side, which is what we wanted
to aproximate at the beginning. By rewriting it we will see that it is a term that we
can compute and work with instead of p(x). For now, notice that if we find a way to
maximize it, at the same time we will minimize the KL divergence between the proxy
and the posterior: the left hand side is fixed and does not depend on any parameter,
and the KL term is always positive because of Jensen inequalities.

1Intuitively, it measures the distance between the two distributions

7

4 LATENT VARIABLES MODELS

Now that we know that by maximizing the ELBO we also make q(z|x) similar to
p(z|x), let’s re-write the formula to analyze it better:

ELBO = E
[
log (p(x|z)p(z))

]
− E

[
log q(z|x)

]
(15)

= E
[
log p(x|z)

]
+ E

[
log p(z)

]
− E

[
log q(z|x)

]
(16)

= E
[
log p(x|z)

]
− DKL(log q(z|x), p(z)) (17)

ELBO = Ez∼q(z|x)
[
log p(x|z)

]
︸ ︷︷ ︸

Reconstruction term

− DKL(log q(z|x), p(z))︸ ︷︷ ︸
Regularization term

(18)

• p(z) is our prior distribution over the latent variables. It is set to be a gaussian:
N (0, I);

• q(z|x) is the proxy of the posterior, modeled as a normal distribution. The
parameters of this distribution are the output of the encoder network, that
taken a x value outputs the mean µ(x) and the s.t.d σ2(x) of the distribution
instead of the plain encoding of the sample.

• p(x|z) is the distribution that given a set of latent variables z describes the
likelihood of each x, modeled as a normal distribution as well. The parameters
of this distribution are the output of the decoder network.

8

5 TRAINING PROCEDURE

5 Training procedure
In Figure 6 I try to explain visually the forward pass that is used during the training
of the variational autoencoder.

Figure 6: Training forward pass

Ideally we want x̄ to be similar to the original sample x, so we can minimize the MSE
between the input and the reconstruction: ||x − x̄||2 by using gradient descent. All
of the operations except for the sampling are derivable, so we can perform standard
backpropagation to train the network. To make also the sampling derivable, we use

9

6 HOW TO GENERATE NEW DATA

a little trick called reparametrization trick (see section 7). We have now seen
how we can maximize the reconstruction term by minimizing the MSE between the
reconstruction and the real input. To maximize the ELBO, we also want to minimize
the regularization term, that represents how much the proxy posterior diverges from
the prior p(z). Considering that we model both of them as normal distributions
as explained in 4, the regularization term has a closed form solution, and the KL
divergence between two gaussians can be easily computed.

We use the term "inference" because when we forward data through the encoder,
we want to "infer" the underlying distribution of the latent variables. On the other
hand, sometimes the term "generation network" is used when referring to the decoder,
because we can generate new data by sampling from p(z), do a forward pass and
sample again from q(x|z).

6 How to generate new data
If we want to generate variants of a sample, we can just do an entire forward pass and
keep x̄. If we want to generate data from scratch, we can sample z ∼ N (0, I) and
forward the latent variable into the decoder, that will output a new sample similar
to the ones in the training dataset. One thing we can also do is calculate what is
the probability of the decoder producing an object x. To do that we would need to
compute p(x), which we know is intractable. What we can do instead is just compute
the ELBO with a forward pass, which is a lower bound of p(x), so it is a valid
approximation of what we want.

10

7 Reparametrization trick
As we said, we want each operation that we do for the forward pass to be derivable,
so that we can backprop during training. Unfortunately, doing z ∼ N (µz|x, Σz|x) is
not a derivable operation. With little effort we can make it derivable: we just sample
ϵ from N (0, I) and do z = µz|x + ϵΣz|x·. This way we provide a way for the gradient
to backpropagate also through the sampling operator.

Figure 7: Reparametrization trick

8 References

[1] Doersch, Carl. "Tutorial on variational autoencoders." arXiv preprint
arXiv:1606.05908 (2016).

[2] Slides from "Machine Learinng and Deep Learning" course of AI Engineering,
Unimore

[3] Stanford lecture on generative models, https://www.youtube.com/watch?v=5WoItGTWV54

[4] Introduction to variational inference, https://www.youtube.com/watch?v=HxQ94L8n0vU

[5] Andrew Ng notes, https://web.stanford.edu/class/cs294a/sparseAutoencoder2011new.pdf

11

	Introduction
	Autoencoders
	Regularized Autoencoders
	Sparse Autoencoders
	Denoising Autoencoders
	Contractive Autoencoders

	Latent variables models
	Training procedure
	How to generate new data
	Reparametrization trick
	References

