
Backpropagation
Deep Learning notes

Matteo Lugli

November 24, 2023

1 Backpropagation
Backpropagation is used to compute the change needed in the weights for each layer
to decrease the loss function. It’s necessary to use a iterative algorithm because we
cannot compute the derivatives analitically as we do with a simple loss function like
Binary Cross Entropy. However, we can compute the change needed in each layer l by
taking some information computed in the layer l +1, that’s why we call this algorithm
backpropagation. This way, if we start from the last layer and go backwards, we can
update the weights in each single layer by going backwards.

1

2 STRUCTURE

2 Structure
Let’s draw a sample DNN structure using ReLU as activation function:

x−→ ReLU(0, W1x)︸ ︷︷ ︸
Layer1

h1−→ ReLU(0, W2h1)︸ ︷︷ ︸
Layer2

h2−→ ReLU(0, W3h2)︸ ︷︷ ︸
Layer3

h3−→ Loss (1)

In each layer, the algorithm computes:

1. The derivative of the loss function with respect to the weights of the current
layer, to make the update;

2. The derivative of the loss function with respect to the input of the layer, to
propagate it back;

2.1 Loss

The first step is to compute the partial derivative of the Loss with respect to his
input, so ∂L

∂h3 . This is simple: the Loss is just a analytical function that can be derived.

2.2 Layer 3

First step is to compute the derivative of the loss with respect to the parameters. If
we look at the equation, the first term is taken from the previous layer (2.1), the only
term that needs to be computed is the latter. Remember that we make an intense use
of the chain rule, which states that given z = f(g(x)) and y = g(x), then dz

dx
= dz

dy
dy
dx

∂L

∂W3
= ∂L

∂h3

∂h3

∂W3

= ∂L

∂h3

∂ReLU(W3h2)
∂W3

= ∂L

∂h3

∂ReLU(W3h2)
∂W3h2︸ ︷︷ ︸

der.ofReLU

∂W3h2

∂W3︸ ︷︷ ︸
h2

(2)

We successfully decomposed ∂h3
∂W3

in easier terms that we are able to compute. With
this value now we can perform a gradient descent step to update the weights of

2

3 CLASS

the current layer. Let’s now compute the value that needs to be backpropagated
to the next layer ("next" in term of computation, "previous" in terms of topological
structure).

Backprop←−−−−− ∂L

∂h2
= ∂L

∂h3︸ ︷︷ ︸
prev. layer

der. of ReLU︷ ︸︸ ︷
∂h3

∂W3h2

∂W3h2

∂h2︸ ︷︷ ︸
W3

(3)

2.3 Layer 2

Let’s do another layer. Let’s write down the math considering that we alredy have ∂L
∂h2

from the previous (in terms of computation, "next" in terms of topological structure)
layer.

∂L

∂W2
= ∂L

∂h2

∂h2

∂W2

= ∂L

∂h2

∂h2

∂W2h1

∂W2h1

∂W2

(4)

Backprop←−−−−− ∂L

∂h1
= ∂L

∂h2

∂h2
∂W2h1

∂W2h1

∂h1
(5)

and so on.

3 Class

a = ((1, 1), (1, 1))→ ((4.5, 4.5)(4.5, 4.5)) (6)

b = a + 2→ 1 (7)

c = b2 → 2b (8)

d = 3c→ 3 (9)

d.mean()→ ((1
N

,
1
N

)(1
N

,
1
N

)) (10)

(11)

3

	Backpropagation
	Structure
	Loss
	Layer 3
	Layer 2

	Class

