Convolutional Neural Networks Notes

Matteo Lugli

January 4, 2024

1 Basic Idea

Input

Kernel
w
y
_b
aw + bxr + bw + ecx + cw + dr +
ey + fz fv + gz gy + hz

w + fxr + Jw + gr + gw + hxr +
y + jz jy + kz ky + Iz

2 NOTATION SUMMARY

2 Notation Summary

The following table provides a summary of the variables used in the example described

in B

Explanation Symbol

padding layers

input image

kernel

output

filters applied in a layer

input width

input height

MIEE 2 K| E| K| T

kernel size

Table 1: Summary of symbols used

To understand the formulation it is really important to clearify a couple of important

things:

o The following formula, given the plain kernel, it flips it and applies it to the
image, performing the so called convolution (if you don’t flip it, it’s just a

correlation);

o For the kernel matrix, we use indexes in such a way that the central element has

coordinates [0,0]. This means that we will end up with some negative indices.

e The input matrix needs to be considered with zero padding. The first row

and column of the resulting matrix will have index -P;

e The output matrix has standard coordinates, so starting from [0,0];

3 EXAMPLE

3 Example

We are going to use the following formula, Input and Kernel:

Yimn]= 3, > Xl gl Hlm—i,n—j] (1)

i=—P+m j=—P+n

S| OO | W | O
oS|I o ||| O W

OO O
S| ||| O

S| oo | OO

Table 2: Input X

5,7 1-110 |1
-1 |-1]-2] -3
-0 [0]0] 0
1 112 3

Table 3: Kernel H

As you can see padding is alredy applied in the input matrix, applying 1 layer of

zeroes means that we are going to start counting indexes at -1.

3 EXAMPLE

0-H[-1,1]=4--3 +

X[1,1]-H[-1,0 =5- -2 +
X[1,2]- H[-1,-1] =61 +

(2)

As you can see in table [we flipped the kernel on both axis and overlapped it with

the correct portion of the input.

1,7 | -1 0 1 2 3
-1 0ol 0o® | 0@ | oM |0
0 01l 10 200) | 300 |
1 0|43 | 52 | gD | o
2 0 7 9 0
3 0 0 0

Table 4: Convolution to compute element Y'[0, 1] of output matrix

Let’s write also the calculations made to compute Y'[1, 2]

3 EXAMPLE

Y[1,2]=m=1n=2P=-1

1=0
X[0,1]-H[1,1] =2-3 +
X[0,2]- H[1,0] =3-2 +
X[0,3] - H[1,-1]=0-1 +
1=1
X[1,1]-H[0,1] =5-0 +
X|[1,2]- H[0,0] =6-0 +
X[1,3]- H[0,—1] =0-0 +
1=2
X[2,1]- H[-1,1] = 8- —3 +
X[2,2]- H[-1,0] =9- -2 +
X[2,3]-H[-1,-1]=0-—-1 +
=—-30
1,7 1-110 1 2 3
-1 1010 0 0 0
0 011/ 20 32 | o
1 | 0|4] 59 | 69| 0©
2 01718392 =D
3 010 0 0 0

Table 5: Convolution to compute element Y[1,2] of output matrix

5 POOLING LAYERS

4 Convolution Layers

In most cases CNNs are used with RGB images. As the name says, such images are
made of 3 channels (Red, Green and Blue). You can imagine them as h x w x 3
cubes, or as 3 h X w matrixes stacked. This means that we have to imagine our
kernels as k x k x 3 dimensional cubes as welll Now it’s easy to imagine why for
each convolutional layer there are £ X k X ¢ x N 4+ N learnable parameters, where
¢ represents the number of channels of the input data (3 in case of RGB images),
and N is the number of filters for that layer. It’s really important to remember that
the number of channels for the next layer becomes N: if in the first layer we use 10
kernels to process our plain image, the input that needs to be processed by the next

layer will have 10 channels!

5 Pooling Layers

Pooling layers are used as noise reduction layers or to perform dimensionality reduction.
The most common types of pooling are mazx pooling and average pooling, which either
compute the maximum value among the overlapped elements or the average value.

The figure below should be clear enough.

Single depth slice

224x224x64 J B 2 4
112x112x64 max pool with 2x2 filters
pool 5|6 |7 | 8 | andstride2 6|8
3 | 2 . 3 I
11213 |4
y

The only 2 hyperparameters that need to be defined are

» Pool size k, in this case equal to 2;

o Pool stride s, in this case equal to 2 as well;

5 POOLING LAYERS

Advantages of the use of pooling layers include:

« Robustness to ezract location of features;

Preventing overfitting;
e Reduce computational cost by reducing dimensions;

» Increasing receptive field of following layers;

The most common pooling configuration in K = 22 with stride S = 2. With this

configuration, 75% of the input volume is discarded.

7 VGG

6 Output volume size

A trick that is usually done when implementing CNNs and not mess up with the
dimensions, is to use kernel size = 3 with a 1 layer padding. An example of such a
convolution has alredy been presented in section [d If you notice, by using such kernel
size and padding, you can overlap the center of the kernel with the top left element
of the input image, and make the kernel slide untill it overlaps the top right element.
Considering that each overlap produces a single element, for each row that we process
this way we get w elements. If we do that for each single row (so by applying a
complete convolution) the output size of the matrix will be exactly h x w, the same
as the size of the input. One of the benefits of doing so is that we can stack how
many convolutional layers as we want and we are sure that the height and width of

the output will not change untill we apply a pooling layer.

Type of layer Output size

w1 —k+2p
s + 1

hg _ hi—k+2p +1

S

CQZN

Convolutional | wy =

Pooling Wy = wlT_k +1

hy =M=k 4]

Coy = Cq1

Table 6: Output size cheatsheet

T VGG

VGG is a "very deep" CNN used for image recognition tasks. This particular architec-
ture (shown in figure) is really effective even if it uses really small kernels (3x3). The
main idea that the authors (Oxford vision lab) of the paper wanted to highlight is
that by increasing the depth of the network (so the number of weight layers) you can
achieve better performance. The authors actually released the pre-trained weights,

and many more papers fine-tuned the network to perform different tasks. To become

7 VGG

more familiar with dimensions, let’s look at the first block of 2 conv layers that are
applied on the input, whose dimensions are 224x224x3. Figure [1] is taken from the
paper where VGG was first proposed.

C
16 weight
layers

24 RGB image
conv3-64
conv3-64
pool

conv3-128
conv3-128
pool

Figure 1: VGGI16 first layers

e The input is taken and the first first layer of the first block is applied. The
notation for this layer is conv3-64, meaning that we use kernels of 3x3xC and
we want the output channels to be 64, so we use 64 kernels. As you can see, the
input channels are not specified. In this case C is 3, because we work on the
input that has 3 channels(RGB).

The output dimensions are 224x224x64. As you can see the width and height
of the original image do not change, because we use 3x3 kernels with a padding
of 1;

o The second layer of the first block is applied on the previous output. The
notation for this layer is the same as before, but this time the input channels are
64 and NOT 3 anymore, because the previous conv layer output channels where

64. The output dimensions are the same as the input dimensions, 224x224x64;

o We then apply a pooling layer, halving the width and height dimensions. The
output dimensions of this pooling layer are 112x112x64.

7 VGG

o Now we step in the second block, where the output channels are 128. The first
layer of the second block uses kernels of 3x3xC, where C in this case is 64. We

use 128 kernels because we want the output channels to be 128.

Always be careful with output and input channels, because the notation might be
slightly confusing.

Let’s look at the pytorch code of VGG-16 implementation, where the dimensions are
specified (in channels, outepanners). The kernel size is wrapped in the VGGlayer class
because it is always 3 (actually in the real implementation 1x1 kernels are used as

well, but you can ignore this detail for now).

self.conv_features = nn.Sequential|(
VGGlayer(in channels, 64),
VGGlayer(64, 64, max pool=

VGGlayer (64, 128),
VGGlayer(128, 128, max pool=

VGGlayer (128, 256),
VGGlayer (256, 256),
VGGlayer (256, 256, max pool=

VGGlayer (256, 512),
VGGlayer (512, 512),
VGGlayer(512, 512, max pool=

VGGlayer (512, 512),
VGGlayer (512, 512),
VGGlayer(512, 512, max pool=

Figure 2: VGG16 Conv layers implementation

After the conv layers, a MLP is used to perform classification. You can see the

structure of this network in Figure 2| together with the forward function, that requries

10

7 VGG

a flatten step to "unroll" the matrices in a 1D tensor that can be forwarded through
the MLP.

self.avgpool = nn.AdaptiveAvgPool2d((7, 7))

self.classifier = nn.Sequential(
nn.Linear(512 * 7 * 7, 4096),
nn.RelLU(),
nn.Dropout(),
nn.Linear (4096, 40960),
nn.RelLU(),
nn.Dropout(),

nn.Linear(4096, num_classes),

)

forward(self, x):
= self.conv_features(x)
self.avgpool(x)
torch. flatten(x, 1)
X = self.classifier(x)
return x

Figure 3: VGG16 DNN layer and forward function

224 x224x3 224 x 224 x 64

7x7x512

14 x 14 x 512 1x1x4096 1 x1x 1000

L

7 convolution+ReLU
max pooling
fully nected +ReLU
softmax

Figure 4: VGG16 Structure

11

	Basic Idea
	Notation Summary
	Example
	Convolution Layers
	Pooling Layers
	Output volume size
	VGG

