
SVM notes
Matteo Lugli
January 1, 2024

1 Margins

Considering the above figure, xp = x − d and d = wα. But xp is also a point on the
hyperplane, so wtxp + b = 0. By substituting we get wt(x − αw) + b = 0.

wt − wtαw + b = 0
wtx + b

wtw
= α

d = wtx + b

wtw
w

Now we want to calculate the magnitute of the distance d, which is

||d||2 =
√

dtd =
√

α2wtw =
√

α2wtw = α
√

wtw

= wtx + b

wtw

√
wtw = wtx + b√

wtw
= wtx + b

||w||2

1

1 MARGINS

So the margin is defined as follows:

γ(w, b) = minx∈D

(
wtx + b

||w||2

)
(1)

In the SVM problem we want to find the separating hyperplane that maximizes the
margin:

maxw,b(γ(w, b)) = maxw,b

(
minx∈D

(
wtx + b

||w||2

))

= maxw,b

(
1

||w||2
minx∈D

(
wtx + b

))

If we consider the hyperplane wtx + b it is scale invariant, meaning that we can
multiply w and b for whatever number β and nothing will change. Intuitively, you
can thing of it this way: imagine that the weights of your classifier are [0.1, 0.2, 0.3].
It means that feature 1 of your vector has importance 0.1 on the overall classification,
feature 2 has importance 0.2, ecc. . .
The important thing here is that feature 2 is twice more important than feature 1, so
if you multiply everything by the same amount nothing will change. It means that
we can set β so that wt + b = 1, obtaining the following objective function:

maxw,b
1

||w||2
(1) = minw,b||w|| (2)

Given that f(z) = z2 is a monotonic function, we can write our full optimization
problem like this:

minw,b||w||2

s.t ∀i yi(wtxi + b) ≥ 0

mini wtxi + b = 1

We can intuitively combine the two costraints in a single one and get the final formu-
lation:

minw,b||w||2

s.t ∀i yi(wtxi + b) ≥ 1 (3)

This problem can be solved by using a quadratic programming solver, and it’s totally
fine. Moreover there are many ways to re-formulate and solve the problem, which are
particularly useful when our data is not linearly separable.

2

2 LAGRANGIAN

2 Lagrangian
In machine learning we usually deal with problems in which points are not linearly
separable. The previous problem can be re-written in a way that allows us to use the so
called Kernel Trick. To do that we need to introduce the Lagrangian formulation. It
is basically a way to reduce a constrained optimization problem into a single equation.

minf(x)

s.t hi(x) ≥ 0 ∀i = 1...m

⇓

L(x, λ) = f(x) +
m∑

i=1
λihi(x) (4)

where λi are called lagrangian multipliers and are all ≥ 0.
The lagrangian dual function is defined like this:

g(λ) = minx

(
L(x, λ)

)
(5)

According to the strong duality we can write that

d∗ = maxλ≥0g(λ) = minf(x) = p∗ (6)

where d* is the solution of the dual and p* is the solution of the primal. So to find
the equation of the dual, we must set dL

dx1
= 0, dL

dx2
= 0, . . . , dL

dxn
= 0. If we plug what

we obtain in L we get a function of λ only, which is what we need. So let’s try to do
that for our specific minimization problem and see what we get. Remember that we
have a constraint for each one of the points in our dataset, so x1 . . . xi

L(w, b, λ) = 1
2wtw +

m∑
i=1

λi(1 − yi(wtx(i) + b)) (7)

So if we simply compute the derivatives dL
dw

= 0 and dL
db

= 0 we get:

dL

db
= 0 ⇒

m∑
i=1

λiyi = 0

dL

dw
= 0 ⇒ w =

m∑
i=1

λiyixi (8)

3

2 LAGRANGIAN

Let’s plug the easiest of the two conditions (8) in the lagrangian and see what we get:

1
2
∑
i,j

λiλjyiyjx
(i)t

x(j) +
∑

i

λi −
∑
i,j

λiyiλjyjx
(i)t

x(j) (9)

This sum is composed by three terms: if you look carefully the first and the last one
are the same (except for the 1

2), so we can simplify:

∑
i

λi − 1
2
∑
i,j

λiλjyiyjx
(i)t

x(j)

let’s write the formulation of the new problem:

maxλ≥0
∑

i

λi − 1
2
∑
i,j

λiλjyiyj⟨x(i)x(j)⟩ (10)

s.t
m∑

i=1
λiyi = 0

Now we have a new objective function that only depends on λ. It also contains a
inner product on which we can apply a Kernel (explained later).

2.1 Lagrangian in non linear case

When we deal with non-linearly separable data, we introduce the slack variables ξi,
needed to insert some amount of tolerance when separating the data. The original
problem is the following:

min 1
2wtw + C

∑
i

ξi

s.t yi(wxi + b) ≥ 1 − ξi i = 1 · · · N (11)

Let’s write the formulation of the lagrangian:

L(w, b, ξ, α, β, C) = 1
2wtw + C

∑
i

ξi −
∑

i

αi[y(i)(x(i)t

w + b) − 1 + ξi] −
∑

i

βiξi (12)

remembering that:

• x(i) are the vectors corresponding to the samples (each sample is a vector indeed);

• y(i) are the labels;

4

2 LAGRANGIAN

• α and β are the lagrangian multipliers. We want the new dual problem to have
only these as variables;

As usual, to write the dual formulation we need to compute the derivative with respect
to each one of the variables that we don’t want in the new problem, ξ, w, b in this
case. We don’t derive with respect to C because we’ll se that it will cancel out.

dL

dw
= 0 ⇒ w∗ =

∑
i

α∗
i y(i)x(i) (13)

dL

db
= 0 ⇒

∑
i

α∗
i y(i) = 0 (14)

dL

dξ
= 0 ⇒ C − αi − βi = 0

⇒ C = αi + βi (15)

⇒ 0 ≤ αi ≤ C

the last relation has to be true because the lagrangian multipliers need to be positive.
Let’s plug 13 in the lagrangian (using yi instead of y(i) to have a lighter notation):

1
2
∑
i,j

aiajyiyjx
t
ixj +C

∑
i

ξi−
∑
i,j

aiajyiyjx
t
ixj −b

∑
i

αiyi+
∑

i

αi−
∑

i

αiξi−
∑

i

βiξi (16)

• The 1o and the 2o term are the same except for the 1
2 ;

• The 4o term is null because of 14;

−1
2
∑
i,j

aiajyiyjx
t
ixj + C

∑
i

ξi +
∑

i

αi −
∑

i

αiξi −
∑

i

βiξi (17)

Let’s use equation 15 and re-write the C:

− 1
2
∑
i,j

aiajyiyjx
t
ixj + (αi + βi)

∑
i

ξi +
∑

i

αi −
∑

i

αiξi −
∑

i

βiξi

− 1
2
∑
i,j

aiajyiyjx
t
ixj +

∑
i

ξiαi +
∑

i

ξiβi +
∑

i

αi −
∑

i

αiξi −
∑

i

βiξi

− 1
2
∑
i,j

aiajyiyjx
t
ixj +

∑
i

αi (18)

s.t 0 ≤ αi ≤ C

s.t
∑

i

aiyi = 0

5

2 LAGRANGIAN

If we carefully look at equation 18 we notice that the formulation is basically the same
as the one in the linearly separable case, we just have an extra bound on the value of
αi (quite an easy bound to consider), that now is limited by C.

2.2 Quadratic formulation derived from dual formulation

In some textbooks you’ll find the dual formulation written this other way: (note that
bold symbols indicate vectors)

−1
2αtQα +

∑
i

αi (19)

Where Q is a square matrix, so the objective function is quadratic. In such context it
is easy to perform gradient descent, because we have a convex function of which we
can analitically compute the derivative. Let’s see how to go from 18 to 19. We will
see a easy example to give you an idea. Let’s suppose that we only have 2 constraints.

Qi,j = y(i)y(j)x(i)t

x(j) (20)∑
i,j

aiajy
(i)y(j)x(i)tx(j) =

∑
i,j

aiajQi,j (21)

The matrix Q is the following (let’s use the underscore notation for vectors for sim-
plicity):

Q =
y1y1x

t
1x1 y1y2x

t
1x2

y2y1x
t
1x2 y2y2x

t
2x2

 (22)

If we do the summation iterations manually, so in a programming fashion with nested
loops (for i, for j), we end up with the following:

α1α1y1y1x
t
1x1 + α1α2y1y2x

t
1x2 + α2α1y2y1x

t
1x2 + α2α2y2y2x

t
2x2 (23)

Let’s now try to do the computation written in equation 19. Remember that:

• α =
α1

α2


• αt = [α1α2]

6

2 LAGRANGIAN

Let’s also do a quick trick to analyze the dimensions that we should have in output
(forgive the not so formal notation):

αtQ ⇒ 1 × n · n × n ⇒ 1 × n (24)

⇒ 1 × n · α ⇒ 1 × n · n × 1 ⇒ scalar (25)

Let’s perform 24 on our example:

[α1α2]
y1y1x

t
1x1 y1y2x

t
1x2

y2y1x
t
1x2 y2y2x

t
2x2

 = [α1y1y1x
t
1x1 + a2y2y1x

t
1x2, α1y1y2x

t
1x2 + α2y2y2x

t
2x2]

(26)

Let’s now perform 25:

[α1y1y1x
t
1x1 + a2y2y1x

t
1x2, α1y1y2x

t
1x2 + α2y2y2x

t
2x2]

α1

α2

 = (27)

α1α1y1y1x
t
1x1 + α1α2y2y1x

t
1x2 + α2α1y1y2x

t
1x2 + α2α2y2y2x

t
2x2 (28)

Which is the same as 23

7

3 KKT CONDITIONS

3 KKT conditions
There is a series of equations called KKT conditions that summarize the relation of
the primal and the dual problem. If x* is a solution for the primal problem, f is
convex and all of the hi(x) are linear constraints, then there exist some multipliers
λi . . . λm such that:

∇f(x∗) − λt∇h(x∗) = 0 (29)

h(x∗) ≥ 0 (30)

λi ≥ 0 ∀i = 1 . . . m (31)

λth(x∗) = 0 (32)

where λt is the solution of the dual! The first 3 conditions are quite intuitive, the last
one is the tricky one. Let’s write the demonstration for that. Let x∗ be the solution
of the primal and λ∗ be the solution of the dual. Because of the strong duality, we
can write the following:

f(x∗) = g(λ∗) = minx

(
f(x) +

m∑
i=1

λ∗
i hi(x)

)
≥ f(x∗) +

m∑
i=1

λ∗
i︸︷︷︸

≥0

hi(x∗)︸ ︷︷ ︸
≥0

≥ f(x∗)

which means that ∑m
i=1 λ∗

i hi(x∗) = 0 ⇒ λ∗T
h(x∗) = 0.

This means that if we have a lagrangian multiplier λi ≥ 0, then the relative constraint
should be active (it is satisfied with equality), so hi(x∗) = 0.

8

4 KERNELS

4 Kernels

max − 1
2αtQα +

∑
i

αi

s.t 0 ≤ αi ≤ C (33)

s.t
∑

yiαi = 0 (34)

where Qi,j = yiyjx
t
ixj, or Qi,j = yiyj⟨xi, xj⟩. Once we find the solutions of the

problem (α∗), we can compute the solutions of the primal w∗ and b∗ thanks to the
kkt conditions. To classify a point, we do

sign w∗ · φ(x) + b∗ =
∑

α∗
i yiφ(xi) · φ(x) + b∗ (35)

where φ is a function that maps the samples in a higher feature space. Such a function
for high dimensions is really complex, and hard to compute. Luckily we don’t need to
know it, because all we have to do is compute a inner product between the elements in
the new feature space. So what we actually need is a function that describes how to
compute the inner product in the new feature space. These functions are called
kernels, and they are sort of easy:

φ(xi) · φ(xj) = K(xi · xj) (36)

One of the most famous and used is the gaussian kernel:

K(xi · xj) = exp
(−||xi − xj||2

2σ2

)
(37)

Note that ||xi − xj||2 might be also a really high value, depending on the dataset. σ

is used to re-scale it in a [0,1] range!

9

5 PEGASOS

5 Pegasos
Pegasos is a training algorithm that solves the primal formulation of the problem by
applying gradient descent. We will call L the "loss" function.

minwL(w) = λ

2 ||w||2 + 1
N

N∑
i=1

max(0, 1 − yi⟨w, xi⟩)︸ ︷︷ ︸
Hinge loss

(38)

• λ is a parameter that controls the tradeoff between maximizing the margin and
classifying the points correctly.

• The loss function increases if we missclassify a point, so if the inner product is
> 0. If it is negative, the 0 gets taken.

For each step of the gradient descent algorithm we update the weights following this
rule:

wt+1 = wt − η∇L(wt) (39)

where η is the lenght of the step size. It decreases at each iteration:

ηt = 1
tλ

(40)

Computing the gradient of the Loss is easy in this case:

∇L(wt) = λwt − 1
N

∑
yi⟨wt,xi⟩<1

yixi (41)

note that the loss takes into account only missclassified points!

10

	Margins
	Lagrangian
	Lagrangian in non linear case
	Quadratic formulation derived from dual formulation

	KKT conditions
	Kernels
	Pegasos

